PPO Implementation in PyTorch

In this blog post, we will explore the Proximal Policy Optimization (PPO) algorithm. We’ll compare it to other deep reinforcement learning algorithms like Double Deep Q-learning and TRPO. Additionally, we’ll learn how to implement PPO using PyTorch.

Double Deep Q-Network

In double DQNs, we use a separate network to estimate the target rather than the prediction network. The separate network has the same structure as the prediction network. And its weights are fixed for every T episode (T is a hyperparameter we can tune), which means they are only updated after every T episode. The update is simply done by […]